複素関数を感覚的に理解するには

このところ、複素関数論(複素解析)を復習してた。

というのは、素数についての本格的入門書を執筆中だからだ。ぼくは、一昨年(2017年)に『世界は素数でできている』角川新書を刊行した。この本は、素数について、お話だけじゃなく、ある程度きちんと理論の中身を紹介するものだった。

世界は素数でできている (角川新書)

世界は素数でできている (角川新書)

 

 相当にがんばって書いたけど、二つの限界があった。第一は新書だからページ数が限れらていること。第二は、縦書きだから数式をあまり入れられないこと。もちろん、だからこそ多くの人が読める良い本に仕上がった。でも、一方で、数学が好きでもっと詳しく知りたい人の期待には応えられなかった。だから、横書きでページ数のたっぷりとれる本で、素数ファンに素数のすべてを提供したい、という気持ちが残った。そういう本を今、執筆中なのだ。

 そのために必要になる課題が二つある。ひとつは、素数の個数を数えるための「ふるい法」をわかりやすく解説するための資料を入手すること。これはいい本を入手できた。もうひとつは、ゼータ関数を理解するために不可欠な複素関数、とりわけ、複素積分を簡単に解説する技を編み出すことだ。

 後者については、すごく良い本2冊に出会うことができて、ほぼ準備が完了した。その二冊を今回紹介しよう。

一冊は小野寺嘉孝『なっとくする複素関数講談社。もう一冊は山本直樹複素関数論の基礎』裳華房

なっとくする複素関数 (なっとくシリーズ)

なっとくする複素関数 (なっとくシリーズ)

 

 

複素関数論の基礎

複素関数論の基礎

 

 この二冊の教科書の共通の特徴は以下のよう。

(1) 公理論的な厳密な組み上げより、直感的な理解を重視している。

(2)   計算の意味・内容をきちんと「言葉」で教えてくれる。

(3)  重要な定理だけに制限し、計算例や応用例もわかりやすいものだけに厳選している。

 とは言っても、二冊にはアプローチの違いもある。

前者の小野寺版は、相当に直感的だ。言いすぎになるかもしれないが、公理論的に相当やばい橋を渡っている。そういう意味で証明には危ないところがある。よく言えば明解、悪く言えば乱暴。でも、だからこそめっちゃわかりやすい。実は、ぼくの理解はこれに近いし、自分の本でもこの方針で解説しようと思っている。

それに比べて、後者の山本版はぎりぎり公理的な組み上げを踏み外さないでいる。にもかかわらず、面倒なところのうまい省略によって、読者の苦痛が最小限に抑えられるように工夫されている。

なので、未修者へのお勧めとしては、「小野寺版をば~っと一気読みして全体像を掴んで、そのあと山本版でもう少しきちんと理解する」という勉強方針を選ぶことだ。

 複素関数については、次の定理たちが代表的なもの。

1.コーシー・リーマン関係式:複素関数微分可能なとき正則といい、正則な関数は実部と虚部の関数の偏微分について、特定の偏微分方程式が成立する。

2.べき級数展開:正則関数は無限回微分可能でべき級数展開できる。

3.コーシーの積分定理:閉経路C内で正則な関数を、C上でぐるっと一周積分するとゼロになる。

4.コーシーの積分公式:関数f(z)を閉経路C内で正則とする。C内部の任意の点aに対して、関数f(z)/(z-a)をC上でぐるっと一周積分すると、f(a)になる。

5.ローラン展開:関数f(z)が中心をbとするドーナツ型開領域の内部で正則とする。このとき、関数f(z)は[係数×((z-b)のn乗)]の無限和で表現できる。ただし、nは負の整数も含む。

6.留数定理:関数f(z)は閉経路C内にいくつかの特異点を持つとする。そのとき、f(z)をC上でぐるっと一周積分した値は、(特異点における留数の総和)×2πi、となる。

ここで留数とは、その特異点ローラン展開したときの(指数n=ー1)における係数。

 だいたいこれらの定理をおさえれば、ゼータ関数にも、リーマン面にも、素数定理にも、なんとかかんとかアタック可能になる。でも、通常の(古典的な)複素解析の教科書でこれらの定理を全部理解しようとすると、きっとどこかで挫折を余儀なくされる。他方、紹介している二冊なら、ほとんど苦痛なくこれらを全部習得できるだろう。

 実は、上記「2.べき級数展開」を前提としてしまえば、他のすべてはあたり前に見えるのだ。複素積分でも「微分積分は逆操作」という「微積分学の基本定理」は成り立つ。言い換えると「fの原始関数Fが存在するなら、aからbへの経路でのfの積分値は終点の値F(b)から始点の値F(a)を引いたものになる」が成立する。べき級数展開は、係数×((z-c)のn乗)の和(ただし、nは0以上の整数)だから、各項には原始関数が存在する。閉経路での積分では(始点a)=(終点b)だから、積分値がゼロになるというコーシーの積分定理は当たり前と「納得」できる。次に実関数の積分でも、xの(ー1)乗以外のxのn乗には原始関数が存在したことを思い出そう。xの(ー1)乗だけ原始関数に対数が関わって変なことが起きていた。実は、この事情は複素関数ではより強烈になる。(z-a)の(ー1)乗が掛け算されるコーシーの積分公式も、(z-a)の(ー1)乗の係数だけを見ればいい、という留数定理もこの事情から出てくることが当たり前じゃんと「納得」できてしまう。

 このような書き方をしているのが、小野寺版だ。したがって、ほんとに腑に落ちる展開になっている。そして、そういうジェットコースター方式で解説しているからこそ、最後に解析接続の章とリーマン面の章を導入することに成功している。(z-a)の(ー1)乗の部分の振舞いがどちらでも大事なイメージ例となるのだ。とりわけ、解析接続の説明は出色だと思う。

 でも、公理論的には、上記「2.べき級数展開」を前提にするのはかなり乱暴なのだ。なぜなら、通常これは、「4.コーシーの積分公式」から導かれるからだ。

 山本版では、ちゃんとこの順序を踏襲している。その分、ある程度の厳密性が保持されている。他方、理解スピードがやや遅くなる恨みがある。

 ただ、山本版は1.から6.の定理たちのイメージを鮮烈にするための工夫が盛りだくさんだから、公理論的苦痛を相当に緩和してくれる。例えば、「1.コーシー・リーマン関係式」の導出は他書に比べて相当にわかりやすい。また、これを「zの複素共役zバーでの偏微分がゼロ」と言い換える工夫がめっちゃ良い。この見方をすると、「正則」とはどういうことかが直感的にストンと腹に落ち、関数の式を見ただけで正則・非正則を見抜けるようになる。

 また、「6.留数定理」の解説では、「n≠-1に対応する展開係数たちはすべて役に立たないガラクタで、積分に必要なすべての情報はn=-1に対応する係数に圧縮されている」という大事な見方を与えてくれる。その上、この定理を「積分しなくても、積分が計算できてしまう」と表現し、「コーシーの夢は、積分の統一的計算法であったという。この夢の成就の形として、留数定理は、まさに文句のないものといえよう」とほめたたえている。こういうの読むと、がんばって勉強してよかったな、と素直に喜べる。

 複素関数を勉強したい人、ゼータ関数素数定理リーマン面を理解したい人は、小野寺版→山本版、という順序で勉強することを強くお勧めする。