ミクロ経済学の教科書を書きました!

前回のエントリー

来週、統計学の新書が刊行されます! - hiroyukikojima’s blog

で予告した通り、ミクロ経済学の教科書が今週末に刊行されるので、その宣伝をしたい。タイトルは、『世界一わかりやすいミクロ経済学入門』講談社、である。いやあ、これも編集者が付けたタイトルだが、あざとい。まことにあざとい(笑)。

 この教科書のコンセプトは、「社会人になって役立たないミクロ経済学の知識は、潔く切り捨てた」ということだ。

ぼくは、30代後半に経済学の勉強のために大学院・経済学研究科に入学した。ぼくは数学科の出身だから、経済学ががんがん高度な数学を使っているのは、めっちゃ楽しかった。「数学って、こんなふうにも使えるんだなあ」と感慨深かった。

でも、大学でミクロ経済学を教えるようになって、その感覚は正反対になった。「なんで、これから社会に出る大学生たちが、こんなこむずかしい数学で表現された役に立たない経済学を勉強しなくちゃいけないんだろう」とかわいそうになった。ぼくにとって、教科書に書かれているミクロ経済学が役に立ったのは、博士課程への進学資格を得ることと、論文を書くときだけだ。それこそ、日常生活にも、ビジネスにも、納税にも、役に立ったためしがない。

そこで、「役に立たない部分を削除した教科書」を書こう、という企画を持った。本書はそういう意図をもって書かれた教科書だ。だから、定番の教科書とは、少なくない点で内容や構成が異なっている。それは、序文で熱く語っているので、今回は序文をそのままさらすことにする。

  『世界一わかりやすいミクロ経済学入門』の序文

ビジネスにマジで役立つミクロ経済学を!

 世の中にミクロ経済学の教科書は掃いて捨てるほどあります。それらと比べて本書のウリがどこにあるかについて説明しましょう。

①ビジネスにマジで役立つ題材だけにしぼっている!

あなたが経済学部卒の社会人か経済学部の学生であるなら、次の質問に答えてみてください。「学部で勉強したミクロ経済学が仕事で役立ったことがありますか?」、「学部で学んでいるミクロ経済学が将来、仕事に活かせる予感がしますか?」。どちらの答えもきっと、NO!でしょう。

悲しいことにも、これらの解答は正解なのです。経済学者であるぼくもこれらの解答に激しく同意します。世の中のミクロ経済学の定番教科書が役立つのは、経済学の大学院に進学するごくごくわずかな人にだけで、それ以外の大量の社会人・学生さんには全くの無用の長物にすぎないと思います。

なぜこんな悲劇が起きているかはここではあえて語りません。代わりに、本書はそういう悲しい現実を打ち破る試みとして書いた、ということを胸を張って述べます。

本書は、ミクロ経済学の定番教科書から、ビジネスに不要な部分を削除しました。そして、誰もがビジネスに携わっていく中で活き活き使える「ものの見方・考え方」だけを採用することにしました。以下、どういう点かを説明しましょう。

②難解な無差別曲線・効用関数・微分はバッサバッサと削除した!

ミクロ経済学の定番教科書では、「効用関数を用いた無差別曲線」をたっぷり解説します。ぼくはこれが学習者を落ちこぼす元凶だと思っています。これが問題なのは、分かりにくいだけではなく何の役にも立たないことです。社会で活かせる場面は皆無と言っていいです。

もう一つの元凶は「微分」です。経済学部の学生たちは「文系だったのに経済学部に来たら微分をやらされた」と頭を抱えることになります。ところで、経済の理解に微分って不可欠でしょうか? ぼくは全くそう思いません。微分は経済現象を表現するための一つの道具にすぎず、不可欠なものでも本質でもありません。消費者の心の中の嗜好も、企業の生産計画も微分なんてできません。だから本書は、これらの元凶を思い切って削除しました。そうすることで逆に、いろいろなことをわかりやすく解説できるようになります(例えば、価格と量の軸を逆にするなど)。また、扱うテーマを広げることもできます(例えば、選挙制度など)。だから、難しい数学に苦しむことなく、「経済学の広さと有用さ」を印象的に納得してもらえるようになったと自負しています。

③経済学の根本的な疑問に答える!

 本書のもう一つのウリは、経済学を学ぶ人が抱くであろう根本的な疑問に答えている、という点です。多くの学習者は、「需要曲線って、どこに存在する?」、「需要曲線ってどうやったら描けるの?」、「需要曲線と供給曲線の交点で取引が行われるのは本当?」といった素朴な疑問を持つでしょう。しかし、たいていの教科書はそういう疑問に答えようとしません。その理由は、経済学者という人種がそういう根本的な問いを通らずに来たからに他なりません。でもぼく自身は、そういう素朴な疑問に頭を悩ませた経験を持っています。本書ではできるだけそういう疑問に答えようと試みました。

 ④解いて楽しいオタクっぽい練習問題を導入!

何の教科書であっても、最も大事なことは練習問題を解くことです。しかし、定番教科書の練習問題は無味乾燥で解く気力が起きないものがほとんどです。本書ではそれを打破すべく、練習問題の題材をできるだけ多くの人が楽しめるものに工夫しました。それこそ、「アイドル市場」、「イケメン俳優さんとのデート」、「アニメ・キャラのフィギュア」などのオタクっぽい題材です。これならきっと、読者も興味を持ち、解く気になって、楽しんで経済学を身に着けることができるに違いありません
 ではでは、ミクロ経済学の楽しい勉強をいざ開始することとしましょう!

実はぼくはだいぶ昔にも、ミクロ経済学の教科書を書いたことがある。MBAミクロ経済学日経BPだ。それこそ、経済学者の駆け出しの頃に書いた本なので、ごりごりにコアなミクロ経済学の内容になっていて、野心的を超えて暴走ぎみの教科書だった。しかも、これでも微分を使わず、最適化の方法は受験数学テクニックを使いまくった。そうすれば、賢い、中学生・文系高校生・文系大学生・社会人にも理解できると考えたからだ。しかし、その考えがバカだった!受験テクニックのほうが、多くの人にとってずっと縁遠いものだったからだ(笑)。長く受験塾の先生をしていたので、その辺の感覚がズレてしまっていたのだ。それで、この教科書は、信じられないほど売れなかった!

こんなことなら、素直に微分を使って書けば良かった、と後悔した

 でも、いいこともあった。この教科書をほめてくださる一人の経済学者に出会うことができたからだ。その人とは今でも、経済学について、いろいろ議論させていただいている。いつか共著の論文を書きましょう、という関係になっている。怪我の功名ともいえる。

 今回の『世界一わかりやすいミクロ経済学入門』講談社は、MBAミクロ経済学日経BPとは正反対の教科書になっている。易しくて・わかりやすくて・面白くて・役に立つ、そういう内容になっている。でも、MBAミクロ経済学日経BPのようなコアな教科書も、いつかリベンジで書いてみたいものだ(売れないと思うけど。笑)。

来週、統計学の新書が刊行されます!

この10月上旬には、ぼくの新著が二冊、同時に刊行される。一冊は統計学の新書、もう一冊はミクロ経済学の教科書だ。いろいろな事情があって、刊行時期が重なってしまった。

というわけなので、今回は、先に刊行される統計学の新書のほうを紹介し、次回に、ミクロ経済学の教科書のほうをエントリーしようと思う。

統計学の新書とは、『難しいことはわかりませんが、統計学について教えてください!』SB新書である。

 

 この本について、ぼくにとって新しい点が二つある。第一は、ライターさんとのコラボレーションであること、第二はぼくが今まで書いてなかった統計学のアイテムを解説していることだ。

第一の点についてもう少し詳しく言うと、本書は、ぼくがレクチャーした内容をライターさんがテープ起こしをして、それを土台に物語を作り、文章を書いてくださったものである。もちろん、初稿ができたあと、ぼくが全文をチェックし、必要な部分は加筆・修正をした。部分的には全面的に書き換えてしまったところもあるくらいだ。

 ぼくがライターさんに文章を書てもらうのは初めての経験だ。これまで漫画家さんとのコラボやイラストレーターさんとのコラボはあったが、ライターさんに文章を委ねる、ということはしなかった。それは、ぼくとしては、サイエンスライターであるにしても、「文筆家」というスタンスにこだわりがあったからだ。今回、それを返上してライターさんに文章を任せたのは、一つには他の書籍企画を抱えていて、割り込みを許すわけにはいかなかったのもあるにはあるが、もう一つに、ぼくのレクチャーをプロのライターさんが形にしたらどんなふうになるか興味があったからだった。実験的にやってみようと思ったのだ。

 実際、今回の新書はぼくにとってとても新鮮なものとなった。ぼくのレクチャーから数学や統計学には素人のライターさんが何を感じ、それをどう物語るかを見ることができたからだ。さすがこれまでいくつものライティングをしてきただけあって、読みやすく、わかりやすく、面白い文章を展開してくれた。自分のアイデアがライターさんの感性を通してこのような豊かな表情を持つのか、と新鮮な気分になった。付けくわえるなら、ぼくの文章はテクニカルな内容を書いていても、独特の癖があるのだな、と再認識することになったのも収穫だった。このライターさんのような職業的な文章はぼくにはとても書けないし、やっぱりぼくはぼくの文体にこだわり続けたいと思う。

 第二点、つまり、統計学の内容について、もう少し詳しく説明しよう。

ぼくはこれまで、統計学の教科書を二冊刊行している。『完全独習 統計学入門』『完全独習 ベイズ統計学入門』(いずれもダイヤモンド社)だ。これらは読者の評価を得ることができ、前者は12万部のベストセラーに、後者もすでに5刷2万部を重ねている。前者は統計的推定としてカイ2乗分布、t分布を用いた推定方法を基本から解説し、後者はベイズ推定の原理を基本から解説している。

 この二冊で解説していない統計学のアイテムとして、多変量の推定がある。具体的には、相関分析回帰分析だ。相関分析とは、二つの量がどういう関係性にあるかを、正の相関、負の相関、無相関として分類する分析法のこと。回帰分析とは、ある量(説明変数)が他の量(被説明変数)にどのくらいのインパクトを持つかを数値で表す分析法のこと。今回の新書では、この二つのアイテムを、通常の推定(正規分布やt分布による区間推定)に加えて投入したのが真骨頂である。

とりわけ、回帰分析では、どの教科書でも必ず導入部で解説する「最小2乗法」を避けたところが新機軸である。正規方程式を経由せずに別の方向から回帰係数の公式を与えたのだ(もちろん、数学的な説明は省略したから、ごまかしと言えばそうなんだけどね)。この工夫によって、回帰分析を新書の一章の中になんとかかんとか説明を押し込むができたのである。

どういう説明かは読んでのお楽しみ(笑)。

 タイトルは例のごとく編集者さんが付けたので、大げさだし羊頭狗肉かもしれない。でも、新書で、縦書きで、物語で、という体裁の統計学の本としては、画期的な出来なんじゃないかな、と思う。是非、書店で手に取ってみて欲しい。

 

完全独習 統計学入門

完全独習 統計学入門

 

 

 

完全独習 ベイズ統計学入門

完全独習 ベイズ統計学入門

 

 

『大学への数学』9月号、10月号は是非読むべし

 大学への数学』東京出版は、高校生向けの受験雑誌だが、単に受験技術を身に着けるだけの雑誌にとどまらない。そのことは、前回、

面白さ満点の『零点問題集』 - hiroyukikojima’s blog

にも書いた。今回は、それを受ける形で、先月に出た9月号と今月の10月号を推奨しようと思う。

 

大学への数学 2019年 10 月号 [雑誌]

大学への数学 2019年 10 月号 [雑誌]

 

 

 9月号には、親友の(大学で同期だった)数学者・松木謙二さん(パデュー大学)が「正四面体を最短に切り開く」という記事を寄稿している。扱っている問題は、

紙でできた正四面体をハサミで切り開いて展開図にするとき、ハサミを入れる距離が最も短くなるには、どのように切れ目を入れればいいか?

というものだ。な~んだ簡単じゃないか、と思った人はたぶん罠にはまっている。解答は予想外な切り口なのだよ。

この問題は、単なるパズルのように見えるだろう。ところがどっこい、解答を読んでみると、離散数学と初等幾何を組み合わせた非常に優れた問題だということがわかる。中学や高校で数学を教えている先生方は、実習を組み合わせた題材として使ってみるといいかもしれない。但し、数学的な証明はけっこう難しいので、生徒たちに「切れ目の短かさを競わせる」みたいな形でやったらいい。

松木さんから面白いエピソードを聞いた。松木さんは、この原稿を執筆している最中に、高校生や一般数学愛好家が参加する公開講座でこの問題をプレゼンしたとのこと。その公開講座の主催者の中に、あの有名なフィールズ賞受賞者の森重文先生がいらっしゃった。森先生はこの問題をたいそう興味深く聞いたらしく、講演後の松木さんに「もっと巧い解き方があるよ」、と教えてくれたというのだ。さすが大数学者、目の付け所が違う。松木さんは「悔しいけど、森先生の方法に証明を書き換えた」と言っていた(笑)。

ちなみに松木さんはここ数年、数学の有名な未解決問題「正標数特異点解消」に取り組んでいる(標数ゼロの場合は広中平祐先生が解いてフィールズ賞をとった)。彼がこの問題を解決したら、友人として鼻が高いので、是非、落城させてほしいと願っている。

 次に10月号の方を紹介しよう。

10月号には、親しい数学者・黒川信重さん(ぼくは二冊、共著をしている)が「反転公式とゼータ関数」という記事を寄稿している。これまたすばらしい記事なのだ。

この記事では黒川さんは、受験問題(立正大が2017年出題)から話をスタートしている。それは「オイラー関数」と呼ばれる数論的関数φ(n)に関する問題だ。(数論的関数とは、正の整数を定義域とする関数のこと)。オイラー関数φ(n)とは、

φ(n)=(1以上n-1以下の整数でnと互いに素な整数の個数)

と定義されるものだ。黒川さんは、このオイラー関数を題材に、受験問題から最先端の数学までを一気にたった4ページで解説しているのである。

まず驚くのは、その受験問題のテーマでもある、 

(nの約数mに対するφ(m)の総和)=n 

 という公式を鮮やかに証明していることだ。ぼくはこの公式は(証明も含め)知っていたが、こんなに鮮やか、かつ、わかりやすい証明があるとは知らなかった。これだけでもう儲けもの。

 でもここからが黒川さんの本領だ。

黒川さんは、数論的関数f(n)があるとき、それを使ってゼータ関数を作れることを紹介する。正式にはL関数と呼ばれるものだ。そして、数論的関数f(n)が乗法的であるとき、(乗法的とは、互いに素なm, nに対してf(mn)=f(m)f(n)となること)、そのゼータ関数オイラー積を持つことを示す。ここでオイラー積とは素数たちの式での因数分解のことだ。上のほうで出てきたオイラー関数φは乗法的なのでφからゼータ関数を作ることができる。黒川さんは、それについて、

(φから作るゼータ関数)=ζ(s-1)/ζ(s)

となることを導いている。この導出も数学が得意な高校生なら理解できるはずだ。

面白いのはここからで、黒川さんは、なんとこのφから作るゼータ関数を用いて、「メビウス反転公式」という有名な公式を証明するのだ。 ぼくはこんなことが可能だと初めて知って、ぶったまげた。メビウス反転公式が、整数論で大活躍する公式であることは知っていたが、ゼータ関数と表裏の関係にあることが実感を持って伝わってきた。これだけでもう1344円(増税後)を払う価値がある(笑)。

そして、エンディングは黒川さんの十八番、「絶対ゼータ関数」の登場だ。

絶対ゼータ関数とは、難攻不落の未解決問題「リーマン予想」を解決すべく黒川さんが編み出した「21世紀のゼータ関数」だ。それをこの「φから作るゼータ関数」を使って紹介しているのである。まあ、ここの部分はさすがにかっとんでいて、高校生には難しいと思うけど、なにより「大きな夢がある」。数学に限らず、何に取り組むにしても、「夢がある」ということが大事なのだ。

 たった4ページで、たったの1344円で、こんな夢のある記事が読めるんだから買わない手はない。

 ちなみに、黒川さんが数学の道に進むきっかけになったのは『大学への数学』を読んだことだと、ある記事で書いていた。かつて『大学への数学』に数学者の上野健爾さんが寄稿し、そこで「ラマヌジャン予想」と「リーマン予想」を紹介した。高校生だった黒川さんはその記事を読んで、この二つの未解決問題に「大きな夢を持った」。それで数学者になったのだという。ラマヌジャン予想はまもなく解決されてしまったが、リーマン予想はいまだ未解決だ。黒川さんは今でもリーマン予想に勇猛果敢に挑んでいる。そして、黒川さん自身も、高校生たちに夢を与えるべく、今回の「絶対ゼータ関数」の記事を書いたのだと思う。実際、最後に次のように綴っている。

このような簡明な絶対ゼータ関数からゼータ関数全体を捉えるのが21世紀のゼータ関数論なのであり、新しい研究者を待っている

ぼく自身も、高校生の頃、『大学への数学』でp進数(素数で作る新奇な数空間)の記事を読んでわくわくした経験を持っている。最初にも書いたが、『大学への数学』は単なる受験雑誌にとどまらず、日本の数学文化を支える大事なインフラなのだ。

 ちなみに、絶対ゼータ関数については、黒川さんがたくさん本を書いているけど、ぼくと黒川さんの共著『21世紀の新しい数学技術評論社を推奨しておこう。

 

 

 

 

面白さ満点の『零点問題集』

 今回は、黒川信重『零点問題集 ゼータ入門』現代数学を紹介したい。

 黒川さんは、これまでたくさんの著作を発表しており、ほとんどすべてがゼータ関数に関するものだ。本書ももちろん、ゼータ関数についての本ではあるが、「問題集」である、という点が異色なのだ。しかも、問題集として相当に面白い

零点問題集 ゼータ入門

零点問題集 ゼータ入門

 

 

 本当に面白い問題集というのは、問題自体が興味深くわくわくし、自分では解けないにしても、解答を読みたくなるし、解答を読んでまた楽しくなるものだ。でもそういう楽しさ満点の問題集はごくわずかしかない。(面白い数学書はいくらでもあるが、問題集では、という意味だからね)。

 ぼくが持っている中で楽しさ満点の問題集を挙げるなら、次の二冊になる。

(1)ニューマン『数学問題ゼミナール』シュプリンガー・フェアラーク東京

(2)ピーター・フランクル&前原潤『やさしい幾何学問題ゼミナール』共立出版

(1)は、相当幅広いジャンルから問題がセレクトされている。難易度も、とても初等的なものから専門的なものにまで広範囲にわたる。「どのような実数の数列も必ず単調な部分列を含むことを証明せよ」のようなシンプルなものから、ラマヌジャンの発見した多重根号の珍妙な式の値を求めるものもある。圧巻は母関数の章で、母関数のこんなに初等的な使い方をこんなにたくさん提示している文献をぼくは知らない。

(2)は、離散数学の専門家二人による共著。こっちも相当面白い問題が満載だ。しかも、含意の深いものが多い。例えば「平面上の任意の5点A, B, X, Y, Zについての五角不等式

AB+XY+YZ+ZX≦AX+AY+AZ+BX+BY+BZ」を証明させる問題のあとに、「距離についての三角不等式だけを用いて五角不等式を証明することは不可能である」ことを証明させる。これは、答えを見ると簡単だが、モデル理論のいい導入例となってると言っていいものだ。この問題集を読むと、初等的な数学でも、十分に奥深く、哲学的に意義あるものがたくさんあるとわかる。

 さて、では、黒川信重『零点問題集 ゼータ入門』

これはゼータ関数にまつわる問題集である。しかし、そんなに高度な知識は前提としていない。ここでいう「零点」とは何か。冒頭にこう書いてある。

零点というと数学と結びつけて試験の嫌な思い出がよみがえる人が多いかもしれない。ところが、数学の世界では零点が重要であり、「零点を見るだけで良い」と宣言して差し支えないほどである。タイムトンネルが別の時空への抜け穴のように、零点は真理への秘密のトンネルなのであろう。

そう、零点とは関数の値がゼロとなる点のこと。黒川さんは零点に数学のすべてがあると見ているのだね。むかし、数学科の同人誌に、だれかが「ヒルベルトの零点定理」のことを「テストに出すとみんな零点をとってしまう定理」と書いていて、吹いたことを思い出した。

 黒川信重『零点問題集 ゼータ入門』には、たくさんの問題が掲載されているので、多くを紹介するわけにはいかない。ここでは、二つほどトピックスを抜き出すにとどめる。

 まず、面白さ満点なのは、第2話「ζ(-2)」の章だ。

ここでは、いろいろなゼータ関数を紹介し、その多くにおいて、s=-2におけるゼータの値がゼロになること、言い換えると、-2が零点であることを紹介している。

オイラーとリーマンが研究したリーマン・ゼータ関数とは、「自然数のs乗の逆数和」を関数として見るもの。s=-2のときは、「自然数のs乗の逆数和」=「平方数の総和」だから、普通の数学では発散する。しかし、解析接続というのを使って「自然数のs乗の逆数和」を全複素数に拡張する(意味をもたせる)ことができ、そうした場合、「平方数の総和」には別の意味が与えられる。その別の意味での計算において、値がゼロになるわけなのだ。

第2話では、この証明を5通りも与えている。どの証明も数学的に興味深く、うならされる。

さらに、リーマン・ゼータ関数を代数体(高次方程式の解を有理数に添加してつくる体)に拡張したデデキントゼータ関数に対して、どの代数体においてもs=-2が零点になることを証明している。

そればかりではない。ウィッテンが量子ゲージ理論に導入したウィッテンゼータ関数(コンパクト位相群上のゼータ関数)においても、特定の群について、s=-2が零点であることを紹介している。(これは黒川さんたちの結果らしい)。

 ほほう、不思議だなあ、美しいなあ、と感心していると、次の第3話でs=-2が零点とならないゼータ関数もたくさんあることが紹介されて、な~んだ、となる。笑

 もう一つ紹介したいのは、第9話「固有値と零点」の章だ。

ここでは、⊿_n(x)という多項式列が紹介されている。この多項式列は、漸化式

⊿_n(x)=x⊿_(n-1)(x)-⊿_(n-2)(x)

で定義されるものだから、高校生でも扱うことができる。(本書での定義は対称行列の固有多項式で行われているので、それは高校範囲外だけどね)。この多項式が、実に面白い性質を持っていることが紹介される。例えば、零点が2cos(kπ/n+1)(k=1, 2,・・・,n)となることとか、ゼータ関数のように関数等式が成り立つこととか、sinの積についての面白い公式

Πsin(kπ/2n)=√n/2^(n-1)

を導くとか、⊿_n(3)がフィボナッチ数になるとか、である。実に面白い。

この関数列を発展させて行った上で、黒川さんの次のような思い出話も付加されている。

この問題の背景については、

黒川信重「数学・思い出の1題<<ある宿題>>『大学への数学』2017年3月号, 34-35

に解説を行っている。もともとは、半世紀近く昔の『大学への数学』1970年2月号に出題された「宿題」が起源である。

これを読むと『大数』の影響力はすごいな、と改めて思う。読者から数々の数学者を生み出しているし、日本の受験数学のレベルを高め、また、日本の数学文化を創り上げている。このことは見逃したり無視したりしてはならない事実だと思う。ぼくも『大数』に連載を持ったことがあるので、誇らしくなる。

 最後に宣伝となるが、黒川さんの問題集のような水準ではないものの、数学の面白さ満点の本として、拙著『キュートな数学名作問題集』ちくまプリマ―新書を推薦しておきたい。

 

キュートな数学名作問題集 (ちくまプリマー新書)

キュートな数学名作問題集 (ちくまプリマー新書)

 

 

 

やさしい幾何学問題ゼミナール

やさしい幾何学問題ゼミナール

 

 

 

高木貞治の数学書がいまさら面白い

 昨日、『天気の子』を観てきた。渋谷で夕方に観たんだけど、満員だった。客は若い子たちが大部分だという印象だった。

 『君の名は。』も大好きだったが、『天気の子』も同じくらい好きな作品だった。とにかく作画がすばらしい。これがアニメか、と思えるくらいの美しさだ。あと、今回の作品は、いろいろなアニメやSF映画へのオマージュというか、トリビュートというか、そういうシーンがたくさんあって楽しかった。RADの曲も相変わらず素晴らしい。ネタばれにならないよう、感想はこのくらいに留めておこう。

 さて、今回は高木貞治『初等整数論講義』共立出版を紹介する。これは昭和6年、つまり、1931年初版のふる~い本である。めちゃくちゃ古典なんだけど、いま、なんだかすごく新鮮な気分で読んでいる。

 高木貞治と言えば、『解析概論』岩波書店が有名だろう。年配の理系出身者たちは一度はトライしたのではないかと思う。さすがに今はあまり手にしないかもしれないが、ぼくらが大学生の頃は全員が持っていたように思う。

 高木貞治の本には、ある種の癖があり、合わない人には合わないだろう。合う人は大好きかもしれない。かなり厳密に理論展開するので、わかりにくいといえばわかりにくいし、読みにくいと言えば読みにくい。ぼくも、そんなには読みこんだことはなく、他の教科書をメインテキストにして、これは参考程度というか辞典替わりに使っていた記憶がある。

 高木貞治の著作についてぼくは、『解析概論』『代数学講義』『初等整数論講義』『代数的整数論』が4部作だと思っている。全部20代で買って持っている。いま、その中から、偶然、『初等整数論講義』を読んでいるのだ。

 なんで今頃読んでいるのかというと、このブログで何度も書いたように、素数についての本を準備しているからだ。とある最近の整数論の本で二次体の数論(ルート数の世界を使って素数の性質を分析する分野)を読んでて、ふと高木貞治はこれをどういう風に理論展開してたっけ、と気になったからだ。

 で、読んでみたら、『初等整数論講義』がなんだかとっても面白いのだ。若いころに読んだときは、全く面白いと思わなかったのに、なぜだか今は、わくわくしながら読んでいるから、めっちゃ不思議だ。

 何が面白いって、中学生で習う2次方程式とかルート数を題材にしながら、非常に興味深い性質の分析が展開されているのだ。「ルート数の連分数が循環する」とか、「どんなルート数が同じ判別式を持つか」とか、「連分数とペル方程式とのつながり」とか。しかも、それらがモジュラー変換という有名な変換で統一的に分析できるところがすごい。モジュラー変換というのは、行列式が±1になる整数成分の行列による変換のことで、ルート数に用いる場合は分数変換として使う。このモジュラー変換は、現代でも保型形式を理解する重要なアイテムともなっている。(詳しくは、

『楕円曲線と保型形式のおいしいところ』のおいしいところ - hiroyukikojima’s blog

のエントリーを参照のこと)。モジュラー変換って、こんなに古くから研究され、こんなにいろんなところに顔を出すのか、とめっちゃ驚き、感動した。

 実は、この『初等整数論講義』は思い出深い本だ。これを買ったのは、忘れもしない19歳のときだった。一浪のあと、なんとか東大に合格し、親戚から合格祝いでもらったお金で買った本だった。合格したら買おうと心に誓って、ある意味、願を掛けて、買わないでいた本だった。憧れの本だった。

 中学生のときフェルマーの大定理から数学の虜になったぼくは、当時には最大の攻略の武器と思われていた代数的整数論を勉強したいと思っていた。だから、この本を読みたかったのだ。でも、大学入学後も、数学科進学後も、そして大学卒業後も、まともに読まなかった。そして、不思議なことに、購入から40年以上もたった今、むさぼるように読んでいるのだ。人生とは異なもの。いろいろなことが起きる。遠くにあったものが、再びめぐりめぐってくる。

 ちなみに、『代数的整数論のほうは、半分ぐらいまでを相当真面目に読んだ。数学科在籍当時、3年生にはグループを作って自主的に輪読をする演習科目があった。担当の先生は最後に審査をするだけで、基本的に学生だけで勉強をするのだ。十冊程度の候補の本から選択するのだけど、その中の一冊だった。ぼくらは3人のグループで週一回集まってこの本を読んだ。非常に難しくて、読解に苦労した。

 最後の教員の審査は、普通は口頭試問なんだけど、我々はペーパーテストを課された。先生が言うには、2年ほど前にこの本を輪読した先輩たちが、本に赤線をいっぱい引いていながら、本を閉じてみると束なったページが非常にきれいで、手垢がついておらず、全く読んだ形跡がなかった。つまり、ぜんぜん輪読なんてしてなかったのだ。そういう事件が発覚したので、ペーパーテストをするようになった、と先生は仰った。全く迷惑な話だった。我々の本は、ちゃんと輪読していたので、手垢で汚れていたというのにだ。

 『代数的整数論は今読んでもさして面白くない気がしている。それならもっと現代的な数論の教科書を読んだほうがきっといいだろう。でも、『初等整数論講義』は話が別だ。なぜなら、高木貞治が、余裕の中で、一種のエンターティメントを込めながら書いているように思えるからだ。というか、そういうことに、やっと今頃になって気がついた次第なのだ。

 ちなみに、『代数的整数論は高木類体論の本で、要するに「ガロア理論の数論」だと言ってもいい。なので、この本を読むなら、先に拙著『完全版 天才ガロアの発想力』技術評論社を読んでおくと良いだろう。この本が当時あって、せめてこれを読んでからチャレンジしていたら、高木『代数的整数論』をもうちょっと理解できたかもしれない。(タイムスリップして、当時のぼくに拙著を渡すか。笑)

 

 

 

文春に書評を寄稿しました!

週間文春』7月18日号に書評を寄稿した。

評した本は、ジョージ・ギルダー『グーグルが消える日』SBクリエイティブ

書評は、以下の文春オンラインで読めるので是非。

「古臭いビジネスモデルはもうすぐ消える?」 グーグルを滅ぼす新勢力とは何か | 文春オンライン

この本の邦題はかなり過激だが、原題は「Life after Google」だから、「消える」とまでは言ってない。

400ページ以上ある大部なので、この字数では中身を全部伝えられていないが、でもそうとう巧く要約したつもり。

半分くらいが、ビットコインとかイーサリアムなど暗号通貨とそれを可能とするブロックチェーンの説明に費やされている。それゆえ、『暗号通貨の経済学』講談社選書メチエを刊行したぼくに書評の依頼が来たのだ。

書評に書かなかった読みどころとして、ビットコインの発明者であるサトシ・ナカモトの正体について、噂される候補者や名乗り出た人物の真偽にわりとページ数をさいて論じていることがあげられる。ここだけでも買う価値が十分ある。

また、グーグルのビジネスモデルの真相もよくわかる。

原文が悪いのか、翻訳が悪いのかわからないが、少し読みづらいという欠点があるが、それを差し引いても読んでおいて損のない本だ。

 

グーグルが消える日 Life after Google

グーグルが消える日 Life after Google

 

 

 

暗号通貨の経済学 21世紀の貨幣論 (講談社選書メチエ)

暗号通貨の経済学 21世紀の貨幣論 (講談社選書メチエ)

 

 

『完全版 天才ガロアの発想力』のお勧めポイント

『完全版 天才ガロアの発想力』技術評論社が、アマゾンにも入荷され、書店にも並んだので、前回に引き続いて、今回も宣伝をしたい。

 これは、2010年に刊行した『天才ガロアの発想力』の新版なのだが、9年たった今、完全版を出した理由は前回

『完全版 天才ガロアの発想力』が今週末に刊行されます! - hiroyukikojima’s blog

で説明したので、そちらで読んでほしい。

今回は、「完全版」として、どんな「定理の証明」を補ったかを説明する。

 完全版は、旧版で省略した多くの定理の証明を加筆した。しかも、その証明はさまざまな教科書から個別に持ってきたものだ。

 ちょっと脇道にそれるが、昔、銀座のフレンチ・レストランに夫婦でランチを予約して食べに行ったことがあった。入店すると、隣のだれもいない席にすでにシャンパンがクーラーに冷やされて準備されていたので、どんなお客が来るのだろうと興味津々だった。来店した客は、どちらかと言えば若い風情の男性だった。連れはおらず、一人で昼食を予約したらしい。それだけでも珍しいのだが、常連客のようでソムリエがずっとぴったり張り付いて話相手をしていたので夫婦して聞き耳をたてた。男は、ひとしきりワインと料理についてうんちくをたれた後、シェフを呼び出して、料理について感想を述べた。そのあと、おもむろにシェフとソムリエに、「日本で一番の中華料理って、どうやって食べるか知ってる?」となぞかけした。ソムリエは首をかしげながら、「どちらの中華店でしょうかねえ」と答えた。すると男は、「まず、前菜は○○に行くでしょ、そしたらタクシーで○○に移動して、北京ダッグを食べる。そして次にタクシーで○○に行ってエビを食べる、そして・・・最後は○○で杏仁豆腐でしめる」と滔々と語った。つまり、男がいう「最高の中華料理屋」とは、「料理別に違う中華店にはしごする」、ということだったのだ。

 我々夫婦は、その常連客の様子がなんだか可笑しくて、観察しながらランチを食べてたので、正直、料理の味を覚えていないくらいだった(笑)。

 さて、何が言いたいかというと、今回の新著『完全版 天才ガロアの発想力』ではまさにこの「最高の中華料理店」をやった、ということなのだ。つまり、定理の証明別に、引用する教科書を変えたのである。

 専門的な数学の教科書には、必ず、著者の意図というのが存在する。だから、ある定理に関しては非常にわかりやすいエレガントな証明をしていながら、別の定理に関しては抽象的で入りくんでわかりずらい証明を書いている。どういう証明を選ぶかは、その本の到達点としてどこを目指しているかに依存するので、どうしてもそんな風になってしまうのだ。

 ぼくは今回の本では、とにかく、初等的で予備知識がなるべく無くて済むイメージしやすい証明を解説することをテーマとした。そんなわけだから、ガロアの定理に関する証明を4冊の本から、「おいしいとこ取り」をしたのである。4冊は次のものだ。

[A]中島匠一『代数方程式とガロア理論共立出版(2006年)

[B]イアン・スチュアート『明解ガロア理論』[原著第3版]講談社(2008年)

[C]黒川信重ガロア理論と表現論』日本評論社(2014年)

[D]辻雄「ガロア理論とその後の現代数学」、P.デュピュイ『ガロアガロア理論』東京図書(2016年)の解説として所収

上の2冊は、旧版刊行前に出版されていたが未読だった。下の2冊は旧版の刊行後に出版された本だ。この下の2冊を入手したのが大きかった。とにかく、証明がわかりやすい。これを読んだので、ガロアの定理に関する、(数学を専門的に勉強していない)一般の読者にもがんばれば理解できる、そういう証明を紹介することが可能だ、という手ごたえが得られたのだ。以下、加筆した証明それぞれについて、どの定理の証明をどの教科書から引っ張ったかを列挙しよう。まずは、最も重要な二つから。

ガロアの基本定理

 これは、体Fのガロア拡大体Kと、KのF上の自己同型の群G(ガロア群)に関して、Gの部分群と、KとFの中間体の間に、1対1対応が存在する、という最も基本となる定理

これについては、黒川[C]から証明を引っ張った。これは、アルティンという数学者の証明した方法だ。アルティンガロア理論の本も持っていたのだが、わかりずらくて読む気がおきず、放置してた。しかし、黒川さんの本を読んで、初めて、「こんなに明解な証明だったのか!」と開眼した。現在、多くのガロア理論の本では、このアルティンの証明が書かれているので(中島[A]もスチュアート[B]もそう)、最もエレガントな証明なのだろうと思う。黒川さんの本を読んで、基本的に線形代数が重要な働きをしていることを悟った。だから、今回の完全版にはベクトル空間の説明も簡素に導入した上で、アルティンの証明を紹介した。

 黒川[C]は、そもそもはゼータ関数のことを解説するものだ。ゼータ関数についてのリーマン予想を解決するには、ガロア群に関するガロア表現というのが重要なのだ。この本は、そこに向かうためにガロアの基本定理の証明のわかりやすい説明を準備することから始まっているである。

四則とべき根で解けない5次方程式

 特定の5次方程式は四則とべき根では解けないのだけれど、それの根本は、その5次方程式の解を有理数体に付加して作る体の自己同型の群(ガロア群)にある性質を持った部分群の列が存在しない、ということから出てくる。ある性質とは、ハッセ図の中の正規部分群の列で、ひとつ上の正規部分群をひとつ下の正規部分群で割った商群が巡回群となっているもののこと。

このことを「5次対称群の非可解性」と呼ぶのだけど、これも多くの教科書ではかなり抽象的でわかりにくい証明をしている(一般性があるからそうするんだと思うんだけどね)。でも、辻[D]で、目の覚めるようなわかりやすい証明を書いている。ぼくがこれまで読んだ証明の中で、最も直感に訴え、最も印象的な証明だと思う。

 この辻さんの解説は、P.デュピュイ『ガロアガロア理論』というガロアの伝記に数学的な解説として追加されたものだ。でも、正直、本編の『ガロアガロア理論』より、辻さんの解説のほうがずっと価値が高いガロアの伝記だったらむしろ、加藤文元『ガロア 天才数学者の生涯』中公新書を読んだほうがずっといいと思う。でも、辻[D]での辻さんの解説部分はあまりにすばらしい。ガロアの定理の証明もさることながら、そのあとに付加されている楕円曲線ガロア理論は、そうとう簡単に書かれており、目から鱗そのものなのだ。これを読まない手はないと思うぞ。

 コーシーの定理

 この定理は、有限群Gの要素数素数pで割り切れるならば、Gの要素gで、gをp個掛け算する(g○g○・・・g○g)と単位要素eになるものが存在する、という定理

このコーシーの定理は、特定の5次方程式の解全部を有理数に付加して作った体Kのガロア群が5次対称群になることを証明するのに使う。シンプルな定理だけど、初等的に(予備知識を最低限に)証明するのは、けっこうハードな道のりなのだ。この証明は、スチュアート[B]から引用した。類等式という「群の要素の分類方法」を使うのだけど、手品のような証明で、正直驚いた。(コーシーって、ガロアを不幸にした数学者じゃないんだっけ?といぶかりながら読んだ)。

この本の著者イアン・スチュアートは、数学の啓蒙書をたくさん書いていて、翻訳もたくさんある。例えば、『現代数学の考え方』ちくま学芸文庫はすごくわかりやすく、すごく面白く書かれている名著だ。なのに、このスチュアート[B]は抽象的で読みにくい。自分の専門について書くとこうなっちゃうのかな、と正直残念だった。ただ、部分的には非常に冴えた証明が導入されている。これがその一つだ。

ガロア群が5次対称群であるような具体的な5次方程式

 虚解を2個、実解を3個持つ5次方程式について、その解たちから作ったガロア拡大体の自己同型は5次対称群となる

例えば、(xの5乗)-10x+5=0がそういう5次方程式にあたる。この証明もスチュアート[B]から引っ張った。前記のコーシーの定理を使うものだが、対称群(並べ変えの群)を勉強した経験があれば、(なくてもそれなりに)、相当わかりやすい証明だ。

正規拡大体はガロア拡大

 n次方程式の解全部を有理数に付加してつくった体を正規拡大体という。体Kの体F上の自己同型によって不変な体がFであるような体をガロア拡大体という。実はこの正規拡大体とガロア拡大体が一致する、というのがこの定理。

実は、旧版でガロアの基本定理の証明を書くのにひるんだのは、この定理を書ききる自身がなかったことも大きい。正規拡大体はとてもわかりやすい。方程式の解全部を有理数に加えて四則で膨らませるだけだからだ。でも、ガロアの定理(5次方程式の非可解性)を示す立役者になるのは、ガロア拡大体の性質(固定体がFとなること)なのだ。だから、この二つの体概念が一致する、という定理は、非常に不思議なことで、これを発見したガロアの天才性が浮きたつ。

この定理の証明は、中島[A]に頼った(ただし、分離多項式についてはスキップした)。スチュアート[B]にもあるけど、非常にわかりずらい。中島[A]という教科書は、とてもわかりやすい書き方をしているのだけど、とにかく分厚すぎる。このページ数を進んでいくと、普通の読者は、きっとどこかで挫折してしまうのではないかと心配になる。だから、ぼくの完全版では、中島[A]からおいしいところだけをパクることにしたのである。

アーベルの定理

 5次方程式には四則とべき根で表現することのできる「解の公式」は存在しない。

この定理も旧版では導入を諦めた定理だ。そもそも、「ガロアの定理」と「アーベルの定理」は素人には区別が難しい。どちらも「5次方程式は四則とべき根では解けない」ということを意味しているからだ。

違いは、「具体的な有理数係数の5次方程式」を扱っているのか、「抽象的な文字係数の5次方程式」を扱っているか、という点なのだ。前者がガロアで後者がアーベル。ガロアの定理が成り立てばアーベルの定理は自動的に成り立つが、逆はそうではない。なぜなら、文字を係数とした5次方程式に四則とべき根による解の公式が存在しなくとも、個々の具体的な5次方程式には、それぞれ別個に四則とべき根による解法があるかもしれない。「解の公式」は、どんな具体的な方程式も「同じアルゴリズムで解ける」ことを意味するからだ。

 証明はアーベルの定理のほうがガロアの定理より格段に易しい。だけど、解を付加したガロア拡大体をイメージするのは、(素人には)アーベルのほうがたぶん難しい。だから旧版では、読者が混乱するのを危惧して、アーベルのほうは一切解説せず、ガロアのほうに集中した。でも、今回、体について、ベクトル空間として見る見方など、かなり抽象的な内容も解説したので、アーベルの定理の証明もきっと理解してもらえると思った。だから、最後の最後に証明を導入したのだ。出典はスチュアート[B]だ。

 以上のように、「最もわかりやすい証明」のお店をはしごする、というのがこの新版の特徴だと言っていい。たぶん、どの啓蒙書よりもきちんとした証明を導入し、どの教科書よりも少ないページ数でそれを達成し、どの教科書よりもイメージしやすい証明を紹介できたと自負している。だから、ぜひぜひ読んでみてな。

 最後に紹介した本にリンクを貼っておく。

 

代数方程式とガロア理論 (共立叢書 現代数学の潮流)

代数方程式とガロア理論 (共立叢書 現代数学の潮流)

 

 

 

明解ガロア理論 [原著第3版] (KS理工学専門書)

明解ガロア理論 [原著第3版] (KS理工学専門書)

 

 

 

 

 

ガロアとガロア理論 (MATH+)

ガロアとガロア理論 (MATH+)